Weekly Evidence Report

Health Technology Assessment Philippines

03 - 09 December 2022

Overview

The following report presents summaries of evidence the Department of Health (DOH) - Health Technology Assessment (HTA) Division reviewed for the period of 03 – 09 December 2022 on current public health emergency concerns, COVID-19 and monkeypox. The HTA Division reviewed a total of 15 studies for COVID-19 and 3 studies for monkeypox.

For COVID-19, evidence includes 1 study on Epidemiology; 8 studies on Vaccines; 4 studies on Drugs; 0 studies on Transmission; 0 studies on Equipment and Devices; 0 studies on Medical and Surgical Procedures; 1 study on Traditional Medicine; 1 study on Preventive & Promotive Health; and 0 studies on Other Health Technologies.

For monkeypox, evidence includes 2 studies on Epidemiology; 1 study on Vaccines; 0 studies on Drugs; 0 studies on Transmission; 0 studies on Equipment and Devices; 0 studies on Medical and Surgical Procedures; 0 studies on Traditional Medicine; 0 studies on Preventive & Promotive Health; and 0 studies on Other Health Technologies.

Sections

Epidemiology
Vaccines
Drugs
Transmission
Traditional Medicine
Equipment & Devices
Medical & Surgical Procedures

Other Health Technologies

Preventive & Promotive Health

COVID-19

Evidence on Epidemiology

Local COVID-19 Case Tracker:

https://doh.gov.ph/2019-nCoV?gclid=CjwKCAjwjtOTBhAvEiwASG4bCOmLzFMQljh8DX_VVSGA-HmO0Pt5_Cscyk_ID7xZv4zqlXG5vm9PM2xoC27QQAvD_BwE

Date	Author/s	Title	Journal/ Article Type	Summary
7 Dec 2022	WHO Global	Weekly epidemiological update on COVID-19 - 10 December 2022	WHO Global Situation Report	 Globally, the number of weekly cases remained stable (-3%) during the week of 28 November to 4 December 2022 as compared to the previous week, with just under 3 million new cases reported. The number of new weekly deaths decreased by 17% as compared to the previous week, with about 7,800 fatalities reported. As of 4 December 2022, over 641 million confirmed cases and over 6.6 million deaths have been reported globally.

Evidence on Vaccines (1 of 2)

Bloomberg Vaccine Tracker: https://www.bloomberg.com/graphics/covid-vaccine-tracker-global-distribution/ WHO COVID-19 Vaccine Tracker:

https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines

WHO SAGE Vaccine Recommendations:

https://www.who.int/groups/strategic-advisory-group-of-experts-on-immunization

Local COVID-19 Vaccine Updates: https://doh.gov.ph/vaccines

Date	Author/s	Title	Journal/ Article Type	Summary
5 Dec 2022	Yasuhara et al	Myopericarditis After COVID-19 mRNA Vaccination Among Adolescents and Young Adults: A Systematic Review and Meta-analysis	JAMA Pediatrics/ Systematic Review	 The incident rate was higher after the second dose than the first dose, with 74.4% (95% CI, 58.2%-90.5%) of events occurring after the second dose Most patients (84.4% [95% CI, 80.5%-88.3%] of patients) had preserved left ventricular (LV) function. Of the 15.6% (95% CI, 11.7%-19.5%) of patients with LV systolic dysfunction (LV ejection fraction [LVEF] <55%), most (14.1% [95% CI, 10.2%-18.1%]) were mild (ie, LVEF 45%-54%), and only 1.3% (95% CI, 0%-2.6%) of patients had severe LV systolic dysfunction (ie, LVEF<35%).
5 Dec 2022	Zou and Daveluy	Lichen planus after COVID-19 infection and vaccination	Archives of Dermatolog ical Research/ Systematic Review	 Lichen planus (LP) is an inflammatory disorder believed to result from CD8 + cytotoxic T-cell (CTL)-mediated autoimmune reactions against basal keratinocytes LP is a rare complication of COVID-19 infection and vaccination that may be mediated by overstimulation of T-cell responses and proinflammatory cytokine production
6 Dec 2022	Abufares et al	COVID-19 Vaccines, Effectiveness, and Immune Responses	Internation al Journal of Molecular Science/ Narrative Review	 Review of safety and effectiveness of WHO-approved COVID-19 vaccines Exposure of healthy individuals to adenovirus vectors or mRNA vaccines causes the early production of antibodies from B and T cells Unhealthy individuals were more likely to experience harmful events due to relapses in their existing conditions
6 Dec 2022	Wallace et al	Effectiveness of Pfizer-BioNTech COVID-19 vaccine as evidence for policy action: A rapid systematic review and meta-analysis of non-randomized studies	PLoS One/ Systematic Review	The pooled VE of Pfizer-BioNTech COVID-19 vaccine was 92.4% (95% CI: 87.5%-95.3%) against symptomatic COVID-19 with moderate evidence certainty (eight studies), 94.3% (95% CI: 87.9%-97.3%) against hospitalization due to COVID-19 with moderate certainty (eight studies), 96.1% (95% CI: 91.5%-98.2%) against death due to COVID-19 with moderate certainty (four studies), and 89.3% (88.4%-90.1%) against asymptomatic SARS-CoV-2 infection with very low certainty (two studies)

Evidence on Vaccines (2 of 2)

Bloomberg Vaccine Tracker: https://www.bloomberg.com/graphics/covid-vaccine-tracker-global-distribution/ WHO COVID-19 Vaccine Tracker:

https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines

WHO SAGE Vaccine Recommendations:

https://www.who.int/groups/strategic-advisory-group-of-experts-on-immunization

Local COVID-19 Vaccine Updates: https://doh.gov.ph/vaccines

Date	Author/s	Title	Journal/ Article Type	Summary
7 Dec 2022	Grana et al	Efficacy and safety of COVID-19 vaccines	Cochrane Database Systematic Review/ Systematic review	 Compared to placebo, most vaccines reduce, or likely reduce, the proportion of participants with confirmed symptomatic COVID-19, and for some, there is high-certainty evidence that they reduce severe or critical disease There is probably little or no difference between most vaccines and placebo for serious adverse events
8 Dec 2022	<u>US FDA</u>	Coronavirus (COVID-19) Update: FDA Authorizes Updated (Bivalent) COVID-19 Vaccines for Children Down to 6 Months of Age	FDA News Release	Authorization of updated (bivalent) Moderna and Pfizer-BioNTech COVID-19 vaccines to include use in children down to 6 months of age as a single booster dose at least 2 months after completion of primary vaccination with the monovalent COVID-19 Vaccine
9 Dec 2022	<u>US CDC</u>	CDC Expands Updated COVID-19 Vaccines to Include Children Ages 6 Months through 5 Years	CDC News Release	Following FDA action, today CDC expanded the use of updated (bivalent) COVID-19 vaccines for children ages 6 months through 5 years. Children ages 6 months through 5 years who previously completed a Moderna primary series are eligible to receive a Moderna bivalent booster 2 months after their final primary series dose. Children ages 6 months through 4 years who are currently completing a Pfizer primary series will receive a Pfizer bivalent vaccine as their third primary dose.
9 Dec 2022	Sandoval et al	Effectiveness of mRNA, protein subunit vaccine and viral vectors vaccines against SARS-CoV-2 in people over 18 years old: a systematic review	Expert Review of Vaccines/ Systematic Review	 Results suggest that new vaccinations could have more than 90% efficacy against SARS-CoV-2, regardless of the technology used. Adverse reactions go from mild to moderate, and good immunogenicity can be observed for all vaccine types

Evidence on Drugs

Date	Author/s	Title	Journal/ Article Type	Summary
3 Dec 2022	<u>Liu et al</u>	Therapeutic Polypeptides and Peptidomimetic s: Powerful Tools for COVID-19 Treatment	Clinical Drug Investigation/ Systematic Review	 Notably, monoclonal antibodies have shown beneficial effects in the early stages of infection, while Paxlovid can significantly reduce hospitalization and mortality among non-vaccinated patients. Among clinical experimental drugs, both the interleukin-1 receptor antagonist anakinra and the bradykinin B2 receptor antagonist icatibant are well tolerated and effective in patients with COVID-19, but long-term trials are needed to confirm the durability of efficacy
3 Dec 2022	Yoshida et al	Sotrovimab use in Japanese inpatients with COVID-19: post-infusion adverse events	Infectious Disease/ Retrospective cohort study	 For the outcome of pyrexia and/or dyspnea (N = 40, 28.8%), multivariate analysis showed that significant risk factors were pre-infusion lowered oximetry below 96.5% (Odds Ratio [OR] 0.344, 95% Confidence Interval [CI] 0.139-0.851, P = 0.021) and pre-infusion temperature more than 36.7 degrees Celsius (OR 4.056, 95% CI 1.696-9.701, P = 0.002). Infusion-related reactions included vomiting immediately after infusion, chill/shivering, dizziness, rash, pruritus, pyrexia, and dyspnea among 44 patients 44 (31.6%)
5 Dec 2022	Ceramella et al	Drugs for COVID-19: An Update	Molecules/ Narrative Review	 Several drugs are used, including antiviral and antimalarial agents, antibiotics, immunomodulators, angiotensin II receptor blockers, bradykinin B2 receptor antagonists and corticosteroids Among the many potential drug candidates, remdesivir, lopinavir/ritonavir, and chloroquine (or hydroxychloroquine), have received an increased scientific attention, but only remdesivir has been approved by the FDA for the treatment of patients with COVID-19, although its clinical efficacy is still controversial
9 Dec 2022	Batiha et al.	A perspective study of the possible impact of obeticholic acid against SARS-CoV-2 infection	Inflammopharm acology/ Observational study	 Obeticholic acid (OCA) is a powerful farnesoid X receptor (FXR) agonist possessing marked antiviral and anti-inflammatory effects. Interestingly, OCA inhibits the reaction between this virus and angiotensin-converting enzyme type 2 (ACE2) receptors. FXR agonists control the expression of ACE2 and the inflammatory signaling pathways in this respiratory syndrome, which weakens the effects of Covid-19 disease and accompanied complications. Taken together, FXR agonists like OCA may reveal both direct and indirect impacts in the modulation of immune reaction in SARS-CoV-2 conditions.

Evidence on Traditional Medicine

Date	Author/s	Title	Journal/ Article Type	Summary
6 Dec 2022	Singh and Yang	Pharmacological Mechanism of NRICM101 for COVID-19 Treatments by Combined Network Pharmacology and Pharmacodyn amics	International Journal of Molecular Science/ In-vitro analysis	 Taiwan Chingguan Yihau (NRICM101), a TCM designed based on a medicinal formula with a long history of almost 500 years, has demonstrated its antiviral properties through clinical studies, yet the pharmacogenomic knowledge for this formula remains unclear Results showed that there were 434 common interactions found between NRICM101 and COVID-19 related genes/proteins. The prevalent use of NRICM101 for standardized treatments to attenuate common residual syndromes or chronic sequelae of COVID-19 were also revealed for post-pandemic future

Evidence on Preventive & Promotive Health

Evidence on Screening

Date	Author/s	Title	Journal/ Article Type	Summary
6 Dec 2022	Grant et al	Consideration s and Challenges for Real-World Deployment of an Acoustic-Base d COVID-19 Screening System	Sensors / Observation al study	 Acoustic-based artificial intelligence (AI) tools could provide a simple, scalable, and prompt method to screen for COVID-19 using easily acquirable physiological sounds System performance is robust to confounding factors, such as gender, age group, and the presence of other respiratory conditions The system achieves promising performance with an AUC-ROC of 0.78

Evidence on Personal Measures

Date	Author/s	Title	Journal/ Article Type	Summary

Evidence on Community Measures

Date	Author/s	Title	Journal/ Article Type	Summary

			_	
HVIC	anca	On	Transm	IEEIAN

Date	Author/s	Title	Journal/ Article Type	Summary
			_	_

Evidence on Equipment and Devices

Date	Author/s	Title	Journal/ Article Type	Summary

Evidence on Medical and Surgical Procedures

Date	Author/s	Title	Journal/ Article Type	Summary

Evidence on Other Health Technologies

Date	Author/s	Title	Journal/ Article Type	Summary
				

MONKEYPOX

Evidence on Epidemiology

Monkeypox Case Tracker:

WHO: https://extranet.who.int/publicemergency/#

US CDC: https://www.cdc.gov/poxvirus/monkeypox/response/2022/index.html

Date	Author/s	Title	Journal/ Article Type	Summary
7 Dec 2022	European CDC	Mpox situation update	Epidemiological update	 Since the start of the mpox outbreak and as of 6 December 2022, 20 934 confirmed cases of mpox have been reported from 29 EU/EEA countries, and 62 cases have been reported from three Western Balkan countries and Türkiye
8 Dec 2022	WHO	WHO situation report	Epidemiological update	 A total of 82,522 laboratory confirmed cases and 1,524 probable cases, including 65 deaths, have been reported to WHO WHO assesses the global risk as Moderate. Regionally, WHO assesses the risk in the Region of the Americas as High and as Moderate in the African Region, Eastern Mediterranean Region, European Region and the South-East Asia Region. The risk in the Western Pacific Region is assessed as Low.

Evidence on Vaccines

Date	Author/s	Title	Journal/ Article Type	Summary
5 Dec 2022	USCDC	Mpox Vaccination Basics	Vaccination guidelines	 In the US, the main vaccine being used against mpox during the 2022 mpox outbreak is JYNNEOS. JYNNEOS is a 2-dose vaccine which may be given to children and adults who are at high risk for mpox. The second dose of JYNNEOS should be given 4 weeks after the first dose. In the current outbreak, there are two groups of people who may get vaccinated: 1) people who have already been exposed to mpox, and 2) people who might be exposed in the future.

Evid	lence	on	Drugs
			Diugo

Date	Author/s	Title	Journal/ Article Type	Summary
	_	_		_

Evidence on Transmission

Date	Author/s	Title	Journal/ Article Type	Summary
_	_			_

Evidence on Traditional Medicine

Date	Author/s	Title	Journal/ Article Type	Summary
_	_	_	_	_

Evidence on Equipment and Devices

Date	Author/s	Title	Journal/ Article Type	Summary
_	_	_	_	_

Evidence on Medical and Surgical Procedures

Date	Author/s	Title	Journal/ Article Type	Summary
	_	_	_	_

Evidence on Preventive & Promotive Health

Evidence on Screening

Date	Author/s	Title	Journal/ Article Type	Summary	
_	_	_	_	_	
Evidence on Personal Measures					
Date	Author/s	Title	Journal/ Article Type	Summary	
_	_	_	_	_	
Evidence on Community Measures					
Date	Author/s	Title	Journal/ Article Type	Summary	

Evidence on Other Health Technologies

Date	Author/s	Title	Journal/ Article Type	Summary
_		_		_